123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- <!doctype html>
- <html>
- <head>
- <meta charset="utf-8">
- <meta content="研究方向" http-equiv="keywords">
- <meta name="description" content="研究方向">
- <meta name="applicable-device" content="pc,mobile">
- <meta http-equiv="Cache-Control" content="no-siteapp">
- <meta http-equiv="Cache-Control" content="no-transform">
- <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
- <title>研究方向</title>
- <link rel="stylesheet" href="css/index.css" type="text/css">
- <link rel="stylesheet" type="text/css" href="css/children.css">
- <script type="text/javascript" src="js/jquery-1.11.0.min.js"></script>
- <script type="text/javascript" src="js/jquery.SuperSlide.2.1.1.js"></script>
- <script type="text/javascript" src="js/public.js"></script>
- <!-- 菜单js等-->
- <!-- 时间选择js -->
- <script type="text/javascript" src="js/laydate.js"></script>
- <script>
- $(document).ready(function(){
- if(window.speechSynthesis !=undefined)
- {
- window.speechSynthesis.pause();
- window.speechSynthesis.cancel();
- }
- //alert("检测"+sessionStorage.getItem("username"));
- var html;
- if(sessionStorage!=undefined)
- {
- if(sessionStorage.getItem("username")!=null)
- {
- $("#needlogin").remove();
- var $span= $("<span>用户名:"+sessionStorage.getItem("username")+"</span>");
- $("#needloginparent").append($span);
-
- }
- else
- {
- $("#a_datamanage").attr('href','login.html'); //医学数据管理界面
- //$("#a_codemanage").attr('href','login.html');代码管理不需要
- $("#a_show").attr('href','login.html');//成果展示
- }
- }
- });
- </script>
- </head>
- <body class="direction-container">
- <!--nav-->
- <div class="nav">
- <div class="nav-container">
- <div class="nav-top">
- <div class="body-container">
- <span class="tip">您好,欢迎来到智能医学影像理解研究中心</span>
- <div id="needloginparent" class="l">
- <a id="needlogin" href="login.html" target="_self">登录</a>
- </div>
- <div id="logoutparent" class="l" style="padding-left: 10px;">
- <a id="needlogout" href="loginout.html" target="_self">退出</a>
- </div>
- </div>
- </div>
- <div class="nav-bottom">
- <div class="body-container">
- <div class="logo-container">
- <img class="logo" src="images/ipiu.jpg">
- <div class="word">
- <div class="name">智能医学影像理解研究中心</div>
- <div class="name-es">Intelligent Medical Image Understand Research Center(IMIU)</div>
- </div>
- </div>
- <div class="side-container">
- <ul>
- <li class="active"> <a href="index.html">首 页</a> </li>
- <li> <a href="Laboratory_members.html">研究中心成员</a> </li>
- <li> <a href="research_findings1.html">研究成果</a> </li>
- <li> <a id="a_datamanage" href="data_manage.html">医学数据管理</a> </li>
- <li> <a id="a_show" href="show_search_text.html">医学影像智能解译系统</a> </li>
- </ul>
- </div>
- </div>
- </div>
- </div>
- </div>
- <div class="headline">
- <div class="body-container">
- <div class="title">首页 » 基于影像解译的自适应智能放疗</div>
- <div class="back"><a href="index.html">返回上一级</a></div>
- </div>
- </div>
- <div class="direction-content">
- <div class="body-container">
- <div class="lf">
- <div class="title">基于影像解译的自适应智能放疗</div>
- <div class="item">
- <div class="article-title">1、多风险器官自动化分割算法研究</div>
- <div class="article">放疗中需要对肿瘤靶区和临近风险器官进行精确勾画,从而可利用计划系统进行放射治疗仿真。针对癌症病人放疗中不同部位人体多风险器官的自动化分割进行深入研究,致力于提高风险器官的分割精度和效率,为临床中存在的勾画效率低、不一致等问题提供潜在的自动化分割算法。</div>
- <img src="images/direction6_1.png">
- <img src="images/direction6_2.png">
- </div>
- <div class="item">
- <div class="article-title">2、多风险器官自动化分割插件——一体化精准放疗系统应用</div>
- <img src="images/direction6_3.png">
- <img src="images/direction6_4.png">
- <div class="article">影像分析头颈肿瘤调强适形放疗中风险器官的勾画系统已在交大一附院、西京医院和UCLA应用。</div>
- </div>
- <div class="item">
- <div class="article-title">3、肿瘤自适应放疗中剂量分布优化计算</div>
- <div class="article">精准放疗依赖于放射剂量分布的精确计算。传统方法对调参敏感、对于复杂病例准确度低、需要大量的训练数据、速度较慢等,且放疗计划会因病人间解剖结构的差异、不同放疗机构、不同剂量师等发生变化,放疗效果不稳定。针对现有的放疗剂量分布计算模型对CT图像中肿瘤区域异质性和与临近多风险器官全局结构特征学习能力不足,而导致部分关键区域的剂量分布计算误差较大的问题,研究基于多分支自注意力网络的放疗剂量分布计算模型,对肿瘤区域的异质性和肿瘤与临近多风险器官的全局结构特征进行深度学习,实现图像全局放疗剂量分布的准确计算。</div>
- <img src="images/direction6_5.png">
- <img src="images/direction6_6.png">
- </div>
- </div>
- <div class="rt">
- <div class="time">
- <script type="text/javascript" src="js/show_date.js"></script>
- </div>
- <div class="title"></div>
- <ul>
- <li><a href="direction_2.html">自动化医疗影像报告自动生成</a></li>
- <li><a href="direction_3.html">基于影像理解的康复评估与精准穿刺</a></li>
- <li><a href="direction_4.html">跨模态医学影像病变检索</a></li>
- <li><a href="direction_5.html">可穿戴智能医疗边缘计算</a></li>
- <li><a href="direction_6.html">智能医学大数据云平台</a></li>
- </ul>
- </div>
- </div>
- </div>
- <!-- 返回顶部 -->
- <div class="side_box">
- <ul>
- <li class="sidetop"> <span></span> </li>
- </ul>
- </div>
- <!-- 底部 -->
- <div class="footerbox bg">
- <div class="wid_main fix">
- <div class="l">
- <a href="index.html" target="blank" class="dib vm"><img src="images/ipiu.jpg" width="85" height="85"></a>
- </div>
- <div class="l txt">
- <p>版权所有:西安电子科技大学智能医学影像理解研究中心 地址:西安电子科技大学人工智能学院</p>
- <p>西安电子科技大学智能医学影像理解研究中心建设和维护 </p>
- </div>
- </div>
- </div>
- </body>
- </html>
|